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An Ultra-Wideband Body Area Propagation Channel
Model—From Statistics to Implementation
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Abstract—Body worn wireless sensors for monitoring health in-
formation is a promising new application. In developing these sen-
sors, a communication channel model is essential. However, there
are currently few measurements or models describing propagation
around the body. To address this problem, we have measured elec-
tromagnetic waves near the torso and derived relevant statistics.
We find that components diffracting around the body are well mod-
eled using correlated log normal variables, and a Nakagami- dis-
tribution can be used to incorporate the influence of arm motions.
We have implement this model and evaluated it in terms of im-
portant communication metrics. This paper describes body area
propagation statistics and proposes a suitable computer model im-
plementation.

Index Terms—Body area network (BAN), propagation channel,
ultra-wideband (UWB).

I. INTRODUCTION

USING wireless sensors around the body to monitor health
information is a promising new application made possible

by recent advances in ultra-low-power technology. Each sensor
continuously measures parameters of interest and sends the data
to a central device such as a personal digital assistant (PDA). Ex-
amples include sensors to observe brain activity for recording or
warning against seizures, or sensors to examine health activity
for diagnosis and automatic emergency calls.

Ultra-wideband (UWB) has recently received much atten-
tion as a promising air interface for short-range low data-rate
communication scenarios matching the requirements of wire-
less biomedical applications [1], [2]. Furthermore, the Federal
Communications Commission (FCC) has recently legalized a
spectral mask between 3.1–10.6 GHz for UWB. Finally, the
IEEE 802.15.4a Committee is developing a low-power UWB
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standard and has included body area networks (BANs) for med-
ical and sport monitoring among their relevant application sce-
narios.1

Unfortunately, there are no detailed UWB BAN channel
models required for wireless biomedical system design based
on real measurements. Past attempts focus on finite-difference
time-domain (FDTD) simulations for narrowband systems [3],
[4] and UWB systems in the 3–6-GHz band [5]. The compu-
tational complexity of the FDTD method limited simulations
to simple scenarios that do not include the impact of small
UWB antennas placed near a body. Narrowband measurements
near the body in the 2.4-GHz band [6], as well as UWB
measurements in the 3–6-GHz band [7]–[11] have also been
reported. However, these studies are mostly qualitative and
do not provide a detailed analysis of the statistics or a model
implementation recipe.

To address problems with body channel characterization, we
have extracted statistics based on measurements of electromag-
netic waves propagating around the torso. Using these statistics,
we propose a model that is evaluated in terms of replicating the
number of significant multipath components (MPCs), and the
distribution of the rms delay spread. We focus on the 3–6-GHz
band, which is an important portion of the FCC mask commonly
proposed for UWB systems.

This paper discusses the results of our measurement cam-
paign and proposes a computer implementation. Section II be-
gins by presenting our measurement setup. This paper focuses
on statistics measured due to diffraction around the torso (Sec-
tion III) and reflection off of the ground (Section IV). Section V
extends these results by considering the impact of arm motions.
Section VI proposes a model and implementation recipe. Fi-
nally, Section VII summarizes our major conclusions.

II. MEASUREMENT SETUP

The measurement setup used to extract the statistics of our
model is summarized here. Reference [11] provides a more
detailed description. We take measurements in the frequency
range from 3 to 6 GHz. A vector network analyzer measures
the -parameter between two antennas placed at various
positions on a human body. All measurements are converted to
the time domain using an inverse fast Fourier transform (IFFT)
and a Hamming window to reduce sidelobes. The same small
low-profile Skycross SMT-3TO10M2 antennas are used for all
measurements. These antennas are chosen since they accurately

1IEEE 802.15.4a. [Online]. Available: http://www.ieee802.org/15/pub/TG4a.
html

2Skycross, Melbourne, FL. [Online]. Available: http://www.skycross.com
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TABLE I
PATH LOSS MODEL PARAMETERS

represent the size and profile requirements typical of body worn
sensor devices [2].

This paper focuses on propagation around the human torso.
However, the procedure and results can be extended for other
scenarios such as communication along the front of the body.
The transmitter is placed at several positions along the front of
the body, and the receiver is placed at various positions around
the torso. A total of 144 measurements are taken to extract prop-
agation statistics.

We found that the channel parameters change depending on
the receiver position around the torso. To describe this phenom-
enon easily, we define three regions. The “front” corresponds to
measurements taken from 0 to 60 , the “side” corresponds to
measurements taken from 60 to 160 , and the “back” cor-
responds to measurements taken from 160 to 180 .

Finally, the separation of the antenna and body has a strong
impact on the path loss [11]. We control this separation by
placing a 5-mm dielectric between the body and antenna. The
antenna is taped to the dielectric and held against the body
using tight elastics.

III. DIFFRACTION AROUND THE TORSO

The path loss, power delay profile (PDP), and amplitude sta-
tistics of signals diffracting around the body is described here.

A. Path Loss

FDTD simulations [5] and measurements [12] have shown
that paths traveling through the body in the gigahertz range
are significantly attenuated. Instead, waves diffract around the
torso. Therefore, we measure the distance around the perimeter
of the body when modeling the path loss. Equation (1) and
Table I summarizes the empirical power decay law extracted
from our measurements. For a detailed description of this
model, refer to [11]

(1)

The parameter is called the path loss exponent, is the dis-
tance from the antenna, is the reference distance, and
is the path loss at the reference distance.

B. PDP

A convenient characterization of multipath propagation chan-
nels is the discrete-time impulse response model [13], [14]. In
this model, the time axis is divided into small time intervals
called “bins.” The received power is integrated within each bin
to obtain the energy received as a function of excess delay. The

Fig. 1. Decrease in mean amplitude over successive 0.5-ns bins, relative to the
first bin. The receiver is worn on the front, side, or back.

first bin corresponds to the first received MPC and its time of ar-
rival is determined manually. Each bin is assigned an amplitude
corresponding to the energy in that bin. The bin size is gener-
ally chosen to be the resolution of the measurement since two
paths arriving within a bin cannot be resolved. The measurement
resolution is approximated as the reciprocal of the bandwidth
swept (0.33 ns) multiplied by the additional window function
bandwidth. The 6-dB bandwidth of the Hamming window is 1.5
times wider than the rectangular window, resulting in a 0.5-ns
resolution. We observed a “dense” impulse response where each
bin contains significant energy above the noise.

By averaging the energy in each bin over all the observations,
we obtain the average PDP (see Fig. 1). The vertical axis shows
the average bin energy relative to the average energy in the first
bin. The horizontal axis indicates the bin number. Individual
points correspond to the average energy in each bin, while the
straight line is obtained by a best-fit procedure. Energy decay
versus excess delay is commonly modeled with an exponential
law [15]. Fig. 1 shows that this is also a reasonable approxi-
mation for body area systems, as illustrated by the linear fit on
a decibel scale. The decay rates depend on the position of the
body, and will be discussed in Section VI.

In general, there is a longer impulse response on the back and
side of the body compared with the front of the body. Since only
negligible signal energy is expected inside the body, this effect
is probably due to echoes off of the body itself and because
there are more ways in which a signal can arrive at the receiver
when it is placed on the opposite side of the torso. For example,
the signal can diffract around the body in both clockwise and
counterclockwise directions, as well as around the shoulders and
arms.

C. Amplitude Distribution

In addition to the large-scale path-loss trend around the
human body, a reliable statistical model is needed to determine
how much the signal level can vary. In UWB systems, each
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resolved channel component is due to a small number of scat-
terers and the amplitude distribution in each bin can be different
[14]. Therefore, we extract the amplitude distribution of every
bin individually.

To determine the amplitude distribution, the large-scale
path loss law (1) is removed. Several distributions are fit to
the resulting data including the Lognormal, Nakagami- ,
and Rayleigh distributions. We use the parameter estimators
from [16] for the Nakagami- distribution, while maximum
likelihood (ML) estimates are used for the other distributions.
Here, these distributions are compared against the measured
data, while Section VI describes the actual parameter values.
Contrary to previous channel studies, we use the Akaike
information criterion (AIC) rather than a hypothesis test for
selecting the best model among the set of candidates. Thus,
before comparing distributions, we briefly review the Akaike
criterion.

1) Akaike Criterion: The second-order AIC is de-
fined as follows [17]:

data (2)

where is the value of the maximized log-like-
lihood over the unknown parameters , given the data and
the model, is the number of parameters estimated in that
model, and is the sample size. This equation is straightfor-
ward to compute since the log likelihood is readily available
from the ML estimates. Intuitively, the first term indicates that
better models have a lower because the log-likelihood re-
flects the overall fit of the model to the data. The second part of
the equation penalizes additional parameters ensuring we select
models that best fits the data with the least number of parame-
ters. The also has a strong theoretical motivation since it
provides an estimate of the Kullback–Leibler information loss
[18]. In this way, the model with the lowest approximates
the “true” distribution with the minimum loss of information.

In practice, the value of the by itself has no meaning.
However, the relative values of among the models can be
used to rank the models from best to worst and to provide a
strength of evidence that one model is better than another. To
facilitate this, the two following related metrics are normally
reported:

(3)

(4)

where is the AIC value for model index , and is the
number of models. Clearly, the best model among the set of
models has a delta AIC of 0. As a rule-of-thumb, sug-
gests substantial evidence for the model, values between 3–7 in-
dicate that the model has considerably less support, while values
greater than ten indicate that the model is very unlikely [17].
The Akaike weights provide a more precise measure of

TABLE II
COMPARISON OF FADING MODELS OF THE FIRST BIN

Fig. 2. Scatter plot of the energy from the first bin (side of the body) plotted
against ideal values of the normal distribution. A straight line indicates the data
is normal.

the strength of evidence and can be interpreted as the proba-
bility that the model is the best among the whole set of candi-
dates. In addition, the ratio of two AIC weights indicates how
much more likely one model is better compared to the other.
Clearly, these metrics are more informative than a simple hy-
pothesis test that can only pass or fail a model based on an ar-
bitrary significance level without providing any strength of evi-
dence or ranking. These advantages will become more apparent
as we apply the metrics to our data in the following sections. For
more information about the Akaike criterion, refer to [17].

2) Comparison of Distributions: Table II shows the AIC
deltas and weights obtained when fitting the Lognormal, Nak-
agami- , and Rayleigh distributions to the distribution of the
energy integrated over the first bin. Results are reported sepa-
rately for measurements taken along the front, side, and back of
the body.

Clearly, the delta AIC values show that the Lognormal model
provides a superior fit to the data for all receiver positions. This
is particularly true along the front and sides of the body where
the AIC weights indicate the Nakagami- and Rayleigh distri-
butions have only negligible probability of being the best model
in the set. While we only present results for the first bin, similar
conclusions are obtained for most of the other bins.

One drawback of using the AIC criterion is it can only be used
to test models relative to other models in the set. It is entirely
possible that none of the models in the set provide a reasonable
fit to the data, and this would not be apparent from Table II alone.
We, therefore, confirm the Lognormal distribution graphically.
Fig. 2 shows the normal probability plot taken from measured
data extracted from the first bin along the side of the body. The
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data appears linear on this scale confirming the Lognormal dis-
tribution provides a good fit to the data.

In addition to the empirical evidence supporting the Log-
normal distribution, we can propose a physical explanation. It is
likely that a large number of effects contribute to the attenuation
of the signal including diffraction, reflection, energy absorption,
antenna losses, etc. Most of these effects are multiplicative, or
equivalently additive in the log domain. By the central limit the-
orem, a large number of random multiplicative effects will con-
verge to a normal distribution in the log domain. Along the side
and back of the body, there are also likely to be additive effects
due to the combination of multiple paths around the body or
reflections off of the arms, shoulders, etc. However, it can be
shown that adding together Lognormal variables results in a dis-
tribution that can be well approximated by another Lognormal
distribution [19].

The Rayleigh distribution is a significantly poorer model
along the front of the body. This distribution is observed when
several paths of equal amplitude and random phase combine at
the receiver. However, along the front of the body, there are no
unresolvable paths of significant amplitude other than the direct
path so this distribution is not physically justified. However,
the Rayleigh AIC weights gradually increase as the receiver is
placed further away from the transmitter. For example, the last
column of Table II indicates some uncertainty as to whether
the Lognormal or Rayleigh distribution provides the best fit. A
plausible explanation is that the signal arrives at the receiver
on the back of the body via multiple paths due clockwise and
counterclockwise diffraction around the body, diffraction over
the shoulders, and reflections off the arms. If enough of these
paths have a large amplitude and combine randomly at the
receiver, the Rayleigh distribution can also plausibly fit the
data.

Finally, under no circumstances does the Nakagami- distri-
bution provide any advantage over the other models. It is sub-
stantially worse than the Lognormal distribution for all antenna
positions, and does not provide any advantage over the Rayleigh
distribution on the back of the body.

3) Correlation Between Bins: Past channel studies have
shown that there is often substantial correlation between the
amplitudes of adjacent bins [5], [13], [20]. We calculate the
correlation coefficient between the log amplitudes of each bin.
In all cases, high correlation coefficients are observed between
adjacent bins ( between 0.65–0.8) and gradually decreases for
nonadjacent bins. High correlation can result from a number of
expected physical effects including wavelength dispersion as
the signal diffracts around the torso, overlapping path trajecto-
ries in the vicinity of the antenna, and a symmetry of the body.

IV. GROUND REFLECTIONS

It is shown in [8], [11] that ground reflections can influence
the total received energy when the receiver is placed on a dif-
ferent side of the body as the transmitter. We can clearly identify
ground reflections arriving approximately 7–10 ns after the ini-
tial diffracting wave, as previously reported in [5], [8], [11]. In
order to characterize reflections, we manually identify their lo-
cation and bin the resulting data, as described in Section III-C.3.
The Lognormal, Nakagami- , and Rayleigh models are fit to

TABLE III
COMPARISON OF FADING MODELS OF THE FIRST BIN

TABLE IV
ENERGY FLUCTUATION OF THE FIRST BIN DUE TO ARM MOTIONS

the resulting distribution of the energy received in each bin. Fi-
nally, the Akaike criterion (Section III-C.1) is applied to test the
validity of each model. Table III summarizes the results of this
comparison for the first bin.

In each case, the Lognormal distribution provides a superior
fit to the data. It is particularly more effective along the front
of the body where the AIC weights indicate only a negligible
probability that one of the other models is the best in the set. As
in Fig. 2, normal plots are used to graphically confirm that the
Lognormal distribution provides a plausible model. The same
physical interpretation of a large number of multiplicative ef-
fects given in Section III-C.3 may also apply to floor reflections.

A similar trend as in Table II is observed where the Rayleigh
and Nakagami- AIC weights are higher when the receiver is
worn on the side or back. This may be due to secondary reflec-
tions off the arms, and legs arriving with approximately equal
amplitude and random phase at the receiver.

As shown in Section III-C, the PDP decays approximately
exponentially and there is substantial correlation between adja-
cent bins. Lognormal parameters, decay rates, and correlations
extracted from measurements will be presented in Section VI.

V. ARM MOTIONS

Plots of the impulse response versus arm position given in
[11] clearly show reflections off the arms of the body can inter-
fere with signal paths diffracting around the torso. To model the
impact of arm motions, we measure the signal variation over
time as a person walks in place. We do not consider the case
when the receiver is on the front of the body since the arms are
too far away to influence the received power [11]. Over 100 mea-
surements are made at 12 different antenna positions along the
side and back of the body. For a detailed description of this ex-
periment setup, refer to [11].

Fluctuation around the mean energy for each bin is recorded
and the Lognormal, Nakagami- , and Rayleigh distributions
are fit to the resulting data. As in Section III, we compare the
relative accuracy of these models using the Akaike criterion.
Table IV summarizes the results for the first bin.

The high delta AIC values obtained for the Rayleigh distribu-
tion indicate that it is a very poor fit to the data compared with
the other models. This is likely due to a combination of two
effects. First, the arms do not produce enough random phase
signal paths by themselves to justify the Rayleigh distribution.
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TABLE V
NAKAGAMI-m PARAMETERS FOR FADING DUE TO ARM MOTIONS

Second, the resolution of our measurement is very high so that
there are not many unresolvable MPCs.

The Lognormal and Nakagami- distributions perform sig-
nificantly better. The signal fluctuation is due to a small number
of random phase paths adding at the receiver. Therefore, neither
of these distributions has a strong physical motivation. How-
ever, there is substantial empirical evidence from other UWB
measurement campaigns indicating that these distributions
often provide a plausible fit to measurements in this situation
[14], [21]. Plots comparing the CDF of the measured data with
the Lognormal and Nakagami- models confirm the excellent
fit for our data as well.

We do not have enough data points to confidently determine
which of these distributions is better. In most bins, the Nak-
agami- AIC deltas are slightly lower. However, the Akaike
weights indicate a high uncertainty. Since both distributions are
very similar, we conclude that either the Lognormal or Nak-
agami- distributions could be used to model energy fluctua-
tions due to arm movements. Models such as the Rayleigh dis-
tribution having no parameters to control the degree of fading
are grossly pessimistic and should not be used.

The -parameters of the Nakagami- distribution extracted
from measurements in the first three bins are provided in
Table V. Notice that tends to be lower on the back of the
body and decreases with increasing excess delay. This is con-
sistent with other UWB measurements [14]. It is likely that
movements result in more unresolvable paths on the back of the
body so the Nakagami- distribution begins to approach the
Rayleigh distribution corresponding to . Furthermore,
a decreasing -parameter indicates that later arriving MPCs
are more diffuse than earlier components which agrees with
intuition [14].

VI. MODEL IMPLEMENTATION

Sections III and IV present a statistical analysis discussing
the kinds of distributions and a physical interpretation. The ex-
tracted parameters and proposes an implementation for a body
area channel model are detailed here.

We can obtain a discrete time model of the channel impulse
response due to signals diffracting around the torso by recreating
the energy distributions of each bin extracted from measure-
ments in Section III. We have found that correlated Lognormal
distributions provide the best fit to the data overall regardless of
the position of the receiver. We, therefore, recommend modeling
body area propagation using correlated Lognormal variables to
represent the gain of each bin.

We can generate an element vector of correlated log-
normal variables using the same procedure outlined in [22].
is the number of bins containing significant energy. Measure-
ments indicate that is sufficient on all sides of the body.

TABLE VI
MODEL PARAMETERS, DIFFRACTION AROUND THE TORSO

We first generate a vector of uncorrelated zero-mean
unit-variance normal variables. is then post multiplied by the
upper triangular Cholesky factorization of the covariance ma-
trix to introduce the correlation and variances. Finally, the
mean amplitude of each bin and the appropriate distance
related path loss are applied. This procedure can be sum-
marized as follows:

(5)

where represents the gain of bin expressed in decibels,
is the by covariance matrix extracted from the mea-

sured correlation coefficients and variances, and is the
element vector of means for each bin. Vector is defined rela-
tive to the path loss given by (1). The decibel gains from
(5) are then converted to the linear domain.

While the model in (5) very accurately recreates the statistics
of the measured impulse responses, it requires many parameters
(vector and covariance matrix ) to define the means, vari-
ances, and correlations of every bin individually.

We propose three simplifications to more compactly describe
the channel. First, Fig. 1 shows that the mean energy in each bin
decays approximately linear in the log domain. Thus, we can re-
place the vector by two parameters, i.e., and , describing
the mean energy in decibels of the first bin and the decay rate
in decibels/bin, respectively. Second, the estimated variances of
each bin do not change substantially as a function of excess
delay. This motivates using a single variance to model all the
bins. Finally, we observe high correlations in adjacent bins, but
gradually lower correlations between nonadjacent bins. There-
fore, a reasonable approximation is to enforce correlation be-
tween adjacent bins only. The last two simplifications allow us
to replace the covariance matrix by two parameters and ,
representing correlation between the adjacent bins and the stan-
dard deviation of each bin.

Using these simplifications, the body area propagation
channel can now be described with only four parameters given
in Table VI extracted from measurements at different locations
on the body. The following can be used to generate the bins
having the specified correlation coefficient in adjacent bins

(6)

(7)

Equation (6) uses zero mean, unit variance, uncorrelated
normal variables to generate such that and have
the specified correlation coefficient. The appropriate standard
deviations and means are then added to generate , the
gain in decibels of bin .
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Fig. 3. Comparison of the measured and modeled rms delay spread distribu-
tion. Receiver worn on the front and back of the torso.

Fig. 4. Comparison of the measured and modeled distribution of the number
of significant bins. Receiver worn on the front and back of the torso.

Two metrics frequently used to verify channel models are the
rms-delay spread , and the number of bins within 10 dB
of the largest bin [21]. By comparing these metrics
between simulated and measured impulse responses, we ensure
that channels generated with our model are spread over the same
amount of time and have the same number of significant resolv-
able MPCs.

Figs. 3 and 4 compare the distributions of and
extracted from measurements, and generated with a computer
using (5) or (7). For clarity, we only show distributions repre-
senting impulse responses when the receiver is worn on the front
and back of the body. Clearly, both models accurately reproduce
the basic characteristics of the measured impulse responses. As
expected, the simplified model is slightly less accurate. How-
ever, the discrepancy is very small, justifying the greatly sim-
plified representation.

TABLE VII
MODEL PARAMETERS, GROUND REFLECTION

Ground reflections arrive between 7–10 ns later depending on
the exact position of the receiver and the height of the body. As
indicated in Section IV, these reflections are well modeled by
Lognormal variables in a similar manner as the signal compo-
nents diffracting around the torso. Therefore, the ground reflec-
tion bins can also be generated using either (5) or (7). Table VII
provides parameters extracted from our measurements. Visual
inspection of and CDFs shows a similarly good
match as in Figs. 3 and 4.

Finally, the influence of arm motions for receivers on the side
or back of the body can be introduced by superimposing a fading
distribution on the mean amplitudes for each bin. Section V in-
dicates a Nakagami- distribution with the parameters from
Table V provides a good fit to our data.

VII. CONCLUSIONS

Using UWB sensors for health monitoring around the body
is a promising new wireless application. Unfortunately, there
are very few measurements or models describing the body
area propagation channel. This paper analyzes statistics and
proposes a model implementation based on an extensive mea-
surement campaign. Using an information theoretical criterion,
we have shown that the distribution of the received energy
due to diffraction and floor reflections is well modeled by
correlated log-normal variables. Furthermore, we show that the
fluctuation in the received energy due to typical arm motions
are better described by distributions having extra parameters
to vary the amount of fading, such as the Lognormal and
Nakagami- distributions, compared with a Rayleigh model.
Finally, we have presented a complete model implementation
and suggested practical simplifications.
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