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ORBCOMM System Introduction
• Developed between 1992 and 1995, put into service in 1996

• Consist of 36 Leo satellites running on 6 orbit planes

• Offer non-real-time messaging and data communication

service

• Satellite altitude: 780 km

• Up link frequency: 148-150 MHz

Down link frequency: 138-139 MHz
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Objective and Approach - 1
• During the initial operation of ORBCOMM system, two

major user segments are

- Operators of fixed assets in remote locations

- Operators of trucking fleets

• Both cases are close to ideal from propagation perspective

- In the first case, users had the option of placing the

ORBCOMM terminal antenna in optimal locations that

were generally free from blockage

- In the second case, large trucks and other major

transportation assets operated on open highways tend

to have fairly unobstructed views of the sky
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Objective and Approach - 2
• As ORBCOMM user base expands, a growing number of

terminals are being operated by mobile users in suburban

and urban environments where blockage by buildings is

more significant

• However, most previous propagation measurement

campaigns and channel modeling studies for LMSSs have

been conducted at UHF, L, S and higher frequencies. Very

little information exists to support LMSS system planning

and performance prediction at VHF
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Objective and Approach - 3
• In this study, we seek to fill a gap in previous work by

- determining the manner in which the coverage of

LMSSs operating in urban and suburban environments

are affected by both wavelengthand building blockage

- considering the manner in which changing the pattern

of the terminal antenna affects system coverage

• Uniform Theory of Diffraction (UTD) based 3-D

propagation model is

- implemented based upon the NEC-BSC code

developed at Ohio State University

- validated with respect to measured data using the

Feature Selective Validation (FSV) [1] method
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Theory: Application Scenario in City Urban

• If line-of-sight (LOS) path is available, signal through LOS contribute the most

significant to the total received power

• If LOS path is unavailable, previous study [2] has shown thatdiffractions from the nearest

roof edge contribute the most to the total received power, since they have shortest

propagation path and interact with scatters only one time
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Theory: Wavelength Vs. Signal Strength

• Received diffraction powerEd
total =

∑
i E

iDAie
−jkidi

- Ei: incident electric field at diffraction point

- Ai: spreading factor

- ki: wave number

- di: distance between diffraction point and receiving antenna

- D: diffraction coefficient, which is a function of diffraction

geometry parameter vectorη and wavelengthλ, and is

expressed asD =
√

λ · f(η) [3].

• With same geometry, longer wavelength signal has bigger

diffraction coefficient, and gives stronger diffraction field.
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Theory:

Terminal Antenna Pattern Vs. Signal Strength
• Signal power at receiving antenna output can be expressed

asPr(d) = PFree Space(d) · α(θ, φ) · gr(θ, φ) [4]

- θ, φ: elevation and azimuth angle of incoming wave

- PFree Space(d): power at receiving antenna through free space

propagation

- α(θ, φ): loss factor dependent on the signal angle of arrival

- gr(θ, φ): receiving antenna gain factor, which is expressed

as k1

4π

∫
2π
0

∫ π
0

Gr(θ, φ)ρr(θ, φ) sin θ dθ dφ

- Gr(θ, φ): radiation pattern of receiving antenna

- ρr(θ, φ): p.d.f. of incoming wave angle of arrival, which is

greatly influenced by environment.
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Method: Physical Statistical Approach
• Physical-Statistical approach combines computational

electromagnetic tool with statistical input data that describe

the physical environment [2].

• The output is a statistical distribution of the parameter of

interest for certain type of region.

• Mathematical formulationP (x) =
∫

p(x|ξ) · TN(ξ)dξ

- ξ is the vector of physical parameters influencing signal

strength

- TN is the joint p.d.f. of the physical parameters
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Method: Propagation Model Signal Flow

Constellation Simulation
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Method: Propagation Model Validation

Statistics of excess path loss
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Feature selective validation
• A point by point comparison between

two data sets, i.e. simulation data and

measurement data

• Amplitude Difference Measure

(ADM): a measure to compare

amplitude and trend of two data sets

• AMD results for our signal strength data

is 0.0724 (Very good agreement)

• From both eyeballing statistical distribution and quantitative FSV

validation value, it can be concluded that there is a good

agreement between computer simulation data and field

measurements.
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Method: Key Simulation Settings
• Simulation time: 24 hours; Time step: 5 seconds;

Location: Vancouver; Constellation: Orbcomm

• Frequencies: 138 MHz, 1.3 GHz

• Simulation geometry

• Degree of buildup:Hb =10 m, 20 m, 40 m, representing

suburban (2 floors), light urban (4-5 floors) and heavy

urban (8-9 floors)

• Terminal antenna patterns:

- Vertical polarizedλ/4 monopole

Gr(θ) = 2 cos(π
2
· cos θ)/ sin θ, θ ∈ [0, π/2]

- Hemispherical pattern approximates Low Profile

AntennaGr(θ) = 2 cos θ, θ ∈ [0, π/2],
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Simulation Result: Wavelength Vs. Coverage

Complementary cumulative probability

of signal strength
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Simulation Result:

Antenna Pattern Vs. Coverage

Complementary cumulative probability of signal strength with different antenna pattern
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Key Findings: Propagation Modeling
• Our NEC-BSC based physical-statistical 3-D satellite

propagation model

- gives reasonable accuracy and ease of use

- saves us the time and efforts required to develop a

custom UTD-based electromagnetic tool.
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Key Findings:

Effect of Wavelength and Building Blockage
• Through extensive computer simulations, we have determined

the manner in which wavelength and building blockage jointly

affect LMSS system coverage

- Under LOS or slight blockage scenario, the difference due to

wavelength is negligible. As degree of buildup increases,

VHF coverage degrades less than L-band coverage

- Under light urban environment, the difference of mean signal

strength is almost 6 dB; Under heavy urban environment, the

difference increases slightly to 7 dB; As building height

increases still further, the difference remains constant

- Standard deviation of 138 MHz signal strength is around

2 dB less than that observed at 1.3 GHz, which is indicative

of higher coverage probability
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Key Findings:

Effect of Terminal Antenna Pattern
• In most environments, an antenna with a hemispherical

pattern provides more effective reception than theλ/4

monopole antenna which has traditionally been the most

popular antenna pattern for ORBCOMM applications.

- In suburban environments, the difference of the mean

signal strength is the most 5.5 dB

- In light urban environments, this difference is nearly

4 dB

- In heavy urban environments, this reduces to only 1.5

dB
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